Distinct Young's modulus of nanostructured materials in comparison with nanocrystals.

نویسندگان

  • Y F Zhu
  • W T Zheng
  • Q Jiang
چکیده

Young's modulus (Y) of nanostructured materials (NSs) free of porosity is modeled with regard to the coordination number imperfection at grain boundaries. In light of it, Y of NSs is suppressed substantially in the whole solid temperature range, differing from the case of nanocrystals (NCs) where Y is enhanced at lower temperature (T) but weakened at higher T. It is found that, similar to NCs, the thermally-driven decline associated with the melting point depression plays an increasing role in suppressing Y of NSs on raising T. On the other hand, the lattice expansion and the bond weakening lead to a further suppression in Y of NSs independent of T, while the lattice contraction and the reinforced bonding strength result in an enhancement in Y of NCs, which should be responsible for the distinction in Y between NSs and NCs. The established functions were supported by available experimental and computer simulation results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of polymethyl methacrylate resin mechanical properties with incorporated halloysite nanotubes

PURPOSE This study inspects the effect of incorporating halloysite nanotubes (HNTs) into polymethyl methacrylate (PMMA) resin on its flexural strength, hardness, and Young's modulus. MATERIALS AND METHODS Four groups of acrylic resin powder were prepared. One group without HNTs was used as a control group and the other three groups contained 0.3, 0.6 and 0.9 wt% HNTs. For each one, flexural s...

متن کامل

Microhardness and Young's modulus of a bonding resin cured with different curing units.

This study evaluated the microhardness and Young's modulus of a photocurable bonding resin, Clearfil SE Bond (SE), cured with four curing units at different distances. The curing units used were: Candelux (Quartz-tungsten halogen), Lux-O-Max (Blue light emitting diode), Arc-light (Plasma-arc), and Rayblaze (Metal halide). Discs of bonding resin were prepared using vinyl molds and were photocure...

متن کامل

Experimental and modeling investigation of cellulose nanocrystals polymer composite fibers

Chen, Si. Ph.D., Purdue University, May 2015. Experimental and Modeling Investigation of Cellulose Nanocrystal Polymer Composite Fibers. Major Professor: R. Byron Pipes. Cellulose nanocrystals (CNCs) are a class of newly developed and sustainable nanomaterial derived from cellulose-based materials such as wood. There have been substantial research efforts to utilize these materials as reinforci...

متن کامل

Full deflection profile calculation and Young’s modulus optimisation for engineered high performance materials

New engineered materials have critical applications in different fields in medicine, engineering and technology but their enhanced mechanical performances are significantly affected by the microstructural design and the sintering process used in their manufacture. This work introduces (i) a methodology for the calculation of the full deflection profile from video recordings of bending tests, (i...

متن کامل

Effect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach

Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 48  شماره 

صفحات  -

تاریخ انتشار 2011